Copied to
clipboard

G = C32×C8.C22order 288 = 25·32

Direct product of C32 and C8.C22

direct product, metabelian, nilpotent (class 3), monomial

Aliases: C32×C8.C22, C8.C62, D4.3C62, Q8.6C62, C62.100D4, (C3×Q16)⋊6C6, Q162(C3×C6), (C6×Q8)⋊15C6, C6.96(C6×D4), C24.14(C2×C6), (C3×SD16)⋊6C6, SD162(C3×C6), C12.81(C3×D4), (C2×C4).7C62, C4.6(C2×C62), (C3×C12).182D4, M4(2)⋊2(C3×C6), (C3×M4(2))⋊4C6, C4.15(D4×C32), (C3×C24).40C22, C12.60(C22×C6), (C32×Q16)⋊10C2, C22.6(D4×C32), (C3×C12).190C23, (C6×C12).276C22, (C32×SD16)⋊10C2, (C32×M4(2))⋊6C2, (D4×C32).34C22, (Q8×C32).37C22, (Q8×C3×C6)⋊18C2, C2.16(D4×C3×C6), (C2×Q8)⋊6(C3×C6), C4○D4.4(C3×C6), (C2×C6).35(C3×D4), (C2×C12).77(C2×C6), (C3×C4○D4).19C6, (C3×D4).18(C2×C6), (C3×C6).313(C2×D4), (C3×Q8).31(C2×C6), (C32×C4○D4).8C2, SmallGroup(288,834)

Series: Derived Chief Lower central Upper central

C1C4 — C32×C8.C22
C1C2C4C12C3×C12D4×C32C32×SD16 — C32×C8.C22
C1C2C4 — C32×C8.C22
C1C3×C6C6×C12 — C32×C8.C22

Generators and relations for C32×C8.C22
 G = < a,b,c,d,e | a3=b3=c8=d2=e2=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, dcd=c3, ece=c5, ede=c4d >

Subgroups: 252 in 180 conjugacy classes, 120 normal (24 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C6, C6, C8, C2×C4, C2×C4, D4, D4, Q8, Q8, Q8, C32, C12, C12, C2×C6, C2×C6, M4(2), SD16, Q16, C2×Q8, C4○D4, C3×C6, C3×C6, C24, C2×C12, C2×C12, C3×D4, C3×D4, C3×Q8, C3×Q8, C8.C22, C3×C12, C3×C12, C62, C62, C3×M4(2), C3×SD16, C3×Q16, C6×Q8, C3×C4○D4, C3×C24, C6×C12, C6×C12, D4×C32, D4×C32, Q8×C32, Q8×C32, Q8×C32, C3×C8.C22, C32×M4(2), C32×SD16, C32×Q16, Q8×C3×C6, C32×C4○D4, C32×C8.C22
Quotients: C1, C2, C3, C22, C6, D4, C23, C32, C2×C6, C2×D4, C3×C6, C3×D4, C22×C6, C8.C22, C62, C6×D4, D4×C32, C2×C62, C3×C8.C22, D4×C3×C6, C32×C8.C22

Smallest permutation representation of C32×C8.C22
On 144 points
Generators in S144
(1 31 17)(2 32 18)(3 25 19)(4 26 20)(5 27 21)(6 28 22)(7 29 23)(8 30 24)(9 36 131)(10 37 132)(11 38 133)(12 39 134)(13 40 135)(14 33 136)(15 34 129)(16 35 130)(41 96 49)(42 89 50)(43 90 51)(44 91 52)(45 92 53)(46 93 54)(47 94 55)(48 95 56)(57 78 65)(58 79 66)(59 80 67)(60 73 68)(61 74 69)(62 75 70)(63 76 71)(64 77 72)(81 123 115)(82 124 116)(83 125 117)(84 126 118)(85 127 119)(86 128 120)(87 121 113)(88 122 114)(97 141 105)(98 142 106)(99 143 107)(100 144 108)(101 137 109)(102 138 110)(103 139 111)(104 140 112)
(1 83 42)(2 84 43)(3 85 44)(4 86 45)(5 87 46)(6 88 47)(7 81 48)(8 82 41)(9 139 77)(10 140 78)(11 141 79)(12 142 80)(13 143 73)(14 144 74)(15 137 75)(16 138 76)(17 117 50)(18 118 51)(19 119 52)(20 120 53)(21 113 54)(22 114 55)(23 115 56)(24 116 49)(25 127 91)(26 128 92)(27 121 93)(28 122 94)(29 123 95)(30 124 96)(31 125 89)(32 126 90)(33 108 69)(34 109 70)(35 110 71)(36 111 72)(37 112 65)(38 105 66)(39 106 67)(40 107 68)(57 132 104)(58 133 97)(59 134 98)(60 135 99)(61 136 100)(62 129 101)(63 130 102)(64 131 103)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136)(137 138 139 140 141 142 143 144)
(2 4)(3 7)(6 8)(10 12)(11 15)(14 16)(18 20)(19 23)(22 24)(25 29)(26 32)(28 30)(33 35)(34 38)(37 39)(41 47)(43 45)(44 48)(49 55)(51 53)(52 56)(57 59)(58 62)(61 63)(65 67)(66 70)(69 71)(74 76)(75 79)(78 80)(81 85)(82 88)(84 86)(90 92)(91 95)(94 96)(97 101)(98 104)(100 102)(105 109)(106 112)(108 110)(114 116)(115 119)(118 120)(122 124)(123 127)(126 128)(129 133)(130 136)(132 134)(137 141)(138 144)(140 142)
(1 62)(2 59)(3 64)(4 61)(5 58)(6 63)(7 60)(8 57)(9 127)(10 124)(11 121)(12 126)(13 123)(14 128)(15 125)(16 122)(17 70)(18 67)(19 72)(20 69)(21 66)(22 71)(23 68)(24 65)(25 77)(26 74)(27 79)(28 76)(29 73)(30 78)(31 75)(32 80)(33 120)(34 117)(35 114)(36 119)(37 116)(38 113)(39 118)(40 115)(41 104)(42 101)(43 98)(44 103)(45 100)(46 97)(47 102)(48 99)(49 112)(50 109)(51 106)(52 111)(53 108)(54 105)(55 110)(56 107)(81 135)(82 132)(83 129)(84 134)(85 131)(86 136)(87 133)(88 130)(89 137)(90 142)(91 139)(92 144)(93 141)(94 138)(95 143)(96 140)

G:=sub<Sym(144)| (1,31,17)(2,32,18)(3,25,19)(4,26,20)(5,27,21)(6,28,22)(7,29,23)(8,30,24)(9,36,131)(10,37,132)(11,38,133)(12,39,134)(13,40,135)(14,33,136)(15,34,129)(16,35,130)(41,96,49)(42,89,50)(43,90,51)(44,91,52)(45,92,53)(46,93,54)(47,94,55)(48,95,56)(57,78,65)(58,79,66)(59,80,67)(60,73,68)(61,74,69)(62,75,70)(63,76,71)(64,77,72)(81,123,115)(82,124,116)(83,125,117)(84,126,118)(85,127,119)(86,128,120)(87,121,113)(88,122,114)(97,141,105)(98,142,106)(99,143,107)(100,144,108)(101,137,109)(102,138,110)(103,139,111)(104,140,112), (1,83,42)(2,84,43)(3,85,44)(4,86,45)(5,87,46)(6,88,47)(7,81,48)(8,82,41)(9,139,77)(10,140,78)(11,141,79)(12,142,80)(13,143,73)(14,144,74)(15,137,75)(16,138,76)(17,117,50)(18,118,51)(19,119,52)(20,120,53)(21,113,54)(22,114,55)(23,115,56)(24,116,49)(25,127,91)(26,128,92)(27,121,93)(28,122,94)(29,123,95)(30,124,96)(31,125,89)(32,126,90)(33,108,69)(34,109,70)(35,110,71)(36,111,72)(37,112,65)(38,105,66)(39,106,67)(40,107,68)(57,132,104)(58,133,97)(59,134,98)(60,135,99)(61,136,100)(62,129,101)(63,130,102)(64,131,103), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144), (2,4)(3,7)(6,8)(10,12)(11,15)(14,16)(18,20)(19,23)(22,24)(25,29)(26,32)(28,30)(33,35)(34,38)(37,39)(41,47)(43,45)(44,48)(49,55)(51,53)(52,56)(57,59)(58,62)(61,63)(65,67)(66,70)(69,71)(74,76)(75,79)(78,80)(81,85)(82,88)(84,86)(90,92)(91,95)(94,96)(97,101)(98,104)(100,102)(105,109)(106,112)(108,110)(114,116)(115,119)(118,120)(122,124)(123,127)(126,128)(129,133)(130,136)(132,134)(137,141)(138,144)(140,142), (1,62)(2,59)(3,64)(4,61)(5,58)(6,63)(7,60)(8,57)(9,127)(10,124)(11,121)(12,126)(13,123)(14,128)(15,125)(16,122)(17,70)(18,67)(19,72)(20,69)(21,66)(22,71)(23,68)(24,65)(25,77)(26,74)(27,79)(28,76)(29,73)(30,78)(31,75)(32,80)(33,120)(34,117)(35,114)(36,119)(37,116)(38,113)(39,118)(40,115)(41,104)(42,101)(43,98)(44,103)(45,100)(46,97)(47,102)(48,99)(49,112)(50,109)(51,106)(52,111)(53,108)(54,105)(55,110)(56,107)(81,135)(82,132)(83,129)(84,134)(85,131)(86,136)(87,133)(88,130)(89,137)(90,142)(91,139)(92,144)(93,141)(94,138)(95,143)(96,140)>;

G:=Group( (1,31,17)(2,32,18)(3,25,19)(4,26,20)(5,27,21)(6,28,22)(7,29,23)(8,30,24)(9,36,131)(10,37,132)(11,38,133)(12,39,134)(13,40,135)(14,33,136)(15,34,129)(16,35,130)(41,96,49)(42,89,50)(43,90,51)(44,91,52)(45,92,53)(46,93,54)(47,94,55)(48,95,56)(57,78,65)(58,79,66)(59,80,67)(60,73,68)(61,74,69)(62,75,70)(63,76,71)(64,77,72)(81,123,115)(82,124,116)(83,125,117)(84,126,118)(85,127,119)(86,128,120)(87,121,113)(88,122,114)(97,141,105)(98,142,106)(99,143,107)(100,144,108)(101,137,109)(102,138,110)(103,139,111)(104,140,112), (1,83,42)(2,84,43)(3,85,44)(4,86,45)(5,87,46)(6,88,47)(7,81,48)(8,82,41)(9,139,77)(10,140,78)(11,141,79)(12,142,80)(13,143,73)(14,144,74)(15,137,75)(16,138,76)(17,117,50)(18,118,51)(19,119,52)(20,120,53)(21,113,54)(22,114,55)(23,115,56)(24,116,49)(25,127,91)(26,128,92)(27,121,93)(28,122,94)(29,123,95)(30,124,96)(31,125,89)(32,126,90)(33,108,69)(34,109,70)(35,110,71)(36,111,72)(37,112,65)(38,105,66)(39,106,67)(40,107,68)(57,132,104)(58,133,97)(59,134,98)(60,135,99)(61,136,100)(62,129,101)(63,130,102)(64,131,103), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144), (2,4)(3,7)(6,8)(10,12)(11,15)(14,16)(18,20)(19,23)(22,24)(25,29)(26,32)(28,30)(33,35)(34,38)(37,39)(41,47)(43,45)(44,48)(49,55)(51,53)(52,56)(57,59)(58,62)(61,63)(65,67)(66,70)(69,71)(74,76)(75,79)(78,80)(81,85)(82,88)(84,86)(90,92)(91,95)(94,96)(97,101)(98,104)(100,102)(105,109)(106,112)(108,110)(114,116)(115,119)(118,120)(122,124)(123,127)(126,128)(129,133)(130,136)(132,134)(137,141)(138,144)(140,142), (1,62)(2,59)(3,64)(4,61)(5,58)(6,63)(7,60)(8,57)(9,127)(10,124)(11,121)(12,126)(13,123)(14,128)(15,125)(16,122)(17,70)(18,67)(19,72)(20,69)(21,66)(22,71)(23,68)(24,65)(25,77)(26,74)(27,79)(28,76)(29,73)(30,78)(31,75)(32,80)(33,120)(34,117)(35,114)(36,119)(37,116)(38,113)(39,118)(40,115)(41,104)(42,101)(43,98)(44,103)(45,100)(46,97)(47,102)(48,99)(49,112)(50,109)(51,106)(52,111)(53,108)(54,105)(55,110)(56,107)(81,135)(82,132)(83,129)(84,134)(85,131)(86,136)(87,133)(88,130)(89,137)(90,142)(91,139)(92,144)(93,141)(94,138)(95,143)(96,140) );

G=PermutationGroup([[(1,31,17),(2,32,18),(3,25,19),(4,26,20),(5,27,21),(6,28,22),(7,29,23),(8,30,24),(9,36,131),(10,37,132),(11,38,133),(12,39,134),(13,40,135),(14,33,136),(15,34,129),(16,35,130),(41,96,49),(42,89,50),(43,90,51),(44,91,52),(45,92,53),(46,93,54),(47,94,55),(48,95,56),(57,78,65),(58,79,66),(59,80,67),(60,73,68),(61,74,69),(62,75,70),(63,76,71),(64,77,72),(81,123,115),(82,124,116),(83,125,117),(84,126,118),(85,127,119),(86,128,120),(87,121,113),(88,122,114),(97,141,105),(98,142,106),(99,143,107),(100,144,108),(101,137,109),(102,138,110),(103,139,111),(104,140,112)], [(1,83,42),(2,84,43),(3,85,44),(4,86,45),(5,87,46),(6,88,47),(7,81,48),(8,82,41),(9,139,77),(10,140,78),(11,141,79),(12,142,80),(13,143,73),(14,144,74),(15,137,75),(16,138,76),(17,117,50),(18,118,51),(19,119,52),(20,120,53),(21,113,54),(22,114,55),(23,115,56),(24,116,49),(25,127,91),(26,128,92),(27,121,93),(28,122,94),(29,123,95),(30,124,96),(31,125,89),(32,126,90),(33,108,69),(34,109,70),(35,110,71),(36,111,72),(37,112,65),(38,105,66),(39,106,67),(40,107,68),(57,132,104),(58,133,97),(59,134,98),(60,135,99),(61,136,100),(62,129,101),(63,130,102),(64,131,103)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136),(137,138,139,140,141,142,143,144)], [(2,4),(3,7),(6,8),(10,12),(11,15),(14,16),(18,20),(19,23),(22,24),(25,29),(26,32),(28,30),(33,35),(34,38),(37,39),(41,47),(43,45),(44,48),(49,55),(51,53),(52,56),(57,59),(58,62),(61,63),(65,67),(66,70),(69,71),(74,76),(75,79),(78,80),(81,85),(82,88),(84,86),(90,92),(91,95),(94,96),(97,101),(98,104),(100,102),(105,109),(106,112),(108,110),(114,116),(115,119),(118,120),(122,124),(123,127),(126,128),(129,133),(130,136),(132,134),(137,141),(138,144),(140,142)], [(1,62),(2,59),(3,64),(4,61),(5,58),(6,63),(7,60),(8,57),(9,127),(10,124),(11,121),(12,126),(13,123),(14,128),(15,125),(16,122),(17,70),(18,67),(19,72),(20,69),(21,66),(22,71),(23,68),(24,65),(25,77),(26,74),(27,79),(28,76),(29,73),(30,78),(31,75),(32,80),(33,120),(34,117),(35,114),(36,119),(37,116),(38,113),(39,118),(40,115),(41,104),(42,101),(43,98),(44,103),(45,100),(46,97),(47,102),(48,99),(49,112),(50,109),(51,106),(52,111),(53,108),(54,105),(55,110),(56,107),(81,135),(82,132),(83,129),(84,134),(85,131),(86,136),(87,133),(88,130),(89,137),(90,142),(91,139),(92,144),(93,141),(94,138),(95,143),(96,140)]])

99 conjugacy classes

class 1 2A2B2C3A···3H4A4B4C4D4E6A···6H6I···6P6Q···6X8A8B12A···12P12Q···12AN24A···24P
order12223···3444446···66···66···68812···1212···1224···24
size11241···1224441···12···24···4442···24···44···4

99 irreducible representations

dim111111111111222244
type++++++++-
imageC1C2C2C2C2C2C3C6C6C6C6C6D4D4C3×D4C3×D4C8.C22C3×C8.C22
kernelC32×C8.C22C32×M4(2)C32×SD16C32×Q16Q8×C3×C6C32×C4○D4C3×C8.C22C3×M4(2)C3×SD16C3×Q16C6×Q8C3×C4○D4C3×C12C62C12C2×C6C32C3
# reps11221188161688118818

Matrix representation of C32×C8.C22 in GL6(𝔽73)

6400000
0640000
0064000
0006400
0000640
0000064
,
6400000
0640000
001000
000100
000010
000001
,
1720000
1560000
00550528
006802345
002204550
0051512323
,
100000
56720000
001110
0007200
0000720
000001
,
7200000
0720000
001000
000001
0071727272
000100

G:=sub<GL(6,GF(73))| [64,0,0,0,0,0,0,64,0,0,0,0,0,0,64,0,0,0,0,0,0,64,0,0,0,0,0,0,64,0,0,0,0,0,0,64],[64,0,0,0,0,0,0,64,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[17,1,0,0,0,0,2,56,0,0,0,0,0,0,5,68,22,51,0,0,50,0,0,51,0,0,5,23,45,23,0,0,28,45,50,23],[1,56,0,0,0,0,0,72,0,0,0,0,0,0,1,0,0,0,0,0,1,72,0,0,0,0,1,0,72,0,0,0,0,0,0,1],[72,0,0,0,0,0,0,72,0,0,0,0,0,0,1,0,71,0,0,0,0,0,72,1,0,0,0,0,72,0,0,0,0,1,72,0] >;

C32×C8.C22 in GAP, Magma, Sage, TeX

C_3^2\times C_8.C_2^2
% in TeX

G:=Group("C3^2xC8.C2^2");
// GroupNames label

G:=SmallGroup(288,834);
// by ID

G=gap.SmallGroup(288,834);
# by ID

G:=PCGroup([7,-2,-2,-2,-3,-3,-2,-2,1037,1016,3110,9077,4548,124]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^3=c^8=d^2=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,d*c*d=c^3,e*c*e=c^5,e*d*e=c^4*d>;
// generators/relations

׿
×
𝔽